If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14n^2-8n=0
a = 14; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·14·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*14}=\frac{0}{28} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*14}=\frac{16}{28} =4/7 $
| 2/x+2=3/5 | | k/4+6=23 | | -2×+4x=16 | | 5x-7=6x+17 | | 14d-11d=12 | | 4q=390.55+3q/5 | | 45+25h=970 | | 62=8(8x+4)-2(5-6x) | | 13k-8k+2=17 | | +15x=-2 | | -17=3+z | | 2t+50+62+80+90=360 | | 2^x*1/32=32 | | 9=z/3—-7 | | 3x^2=10*2x | | 2x+(11x+3)=146 | | 4x-2=3xľ10 | | 16+2q=56 | | 30-x-1=-1x-20 | | 9=z/3–7 | | 2x+(11x+3)=180 | | (-m-7)(6m-5)=0 | | 16x+120=4x | | 39=2x+x+13 | | 4h+7h-26=6 | | 55+3x=75+2x | | 2(5x+10)=12x-2 | | 204=74-y | | (2q+8)+(3q+8=) | | 15f-45=180 | | 7.6=y-6.5 | | 15/12x+4=3/8 |